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Fine-grained Human-centric Tracklet
Segmentation with Single Frame Supervision

Si Liu, Guanghui Ren, Yao Sun, Jinqiao Wang, Changhu Wang, Bo Li, Shuicheng Yan

Abstract—In this paper, we target at the Fine-grAined human-Centric Tracklet Segmentation (FACTS) problem, where 12 human
parts, e.g., face, pants, left-leg, are segmented. To reduce the heavy and tedious labeling efforts, FACTS requires only one
labeled frame per video during training. The small size of human parts and the labeling scarcity makes FACTS very challenging.
Considering adjacent frames of videos are continuous and human usually do not change clothes in a short time, we explicitly
consider the pixel-level and frame-level context in the proposed Temporal Context segmentation Network (TCNet). On the one
hand, optical flow is on-line calculated to propagate the pixel-level segmentation results to neighboring frames. On the other hand,
frame-level classification likelihood vectors are also propagated to nearby frames. By fully exploiting the pixel-level and frame-
level context, TCNet indirectly uses the large amount of unlabeled frames during training and produces smooth segmentation
results during inference. Experimental results on four video datasets show the superiority of TCNet over the state-of-the-arts.
The newly annotated datasets can be downloaded via http://liusi-group.com/projects/FACTS for the further studies.

Index Terms—Video object segmentation, human-centric, fine-grained, optical flow estimation.
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1 INTRODUCTION

During recent years, increasing efforts are devoted
to the video object segmentation task. The famous
benchmarks include DAVIS 2016 [32], 2017 [35] and
2018 challenges [3], shown as Figure 1 (a). These
challenges focus on the semi-supervised video object
segmentation task, that is, the algorithm is given a
video sequence and the mask of the objects in the
first frame, and the output should be the masks of
those objects in the rest of the frames. Recently, Xu
et al. collect an even larger video object segmentation
dataset [43] named as YouTube-VOS, shown as Figure
1 (b). However, in some real applications, object-level
segmentation is insufficient. For example, to tackle the
person re-identification [47], [10], person attribute pre-
diction [23], [45], people search [16] and fashion syn-
thesis [50] problems, human instance segmentation is
too coarse. The more detailed, fine-grained human parts
segmentation, e.g., face, upper clothes and pants, is
required.

In this paper, we tackle a rarely studied problem,
namely Fine-grAined human-Centric Tracklet Seg-
mentation (FACTS). As a starting point, we take the
human parts segmentation as a concrete example of
FACTS. As shown in Figure 1 (c), each person is
labeled with 12 human parts, including face, left/right
arm, bag, left/right shoes etc. Comparing with the
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Fig. 1. Examples of the training data from DAVIS
2017 [35], Youtube-VOS [43] and our newly collected
Outdoor dataset. Best viewed in color.

labeling in Figure 1 (a) and (b) that both only seg-
ment the human out of the background, annotating
multiple human parts is much more time-consuming.
Therefore, an affordable and applicable choice is to
label one single frame per video. To sum up, FACTS
is different with the video object segmentation tasks
in two aspects. First, FACTS solves a more fine-grained,
human-centric problem while DAVIS and YouTube-
VOS only segment the coarser object masks. Second,
FACTS needs only single frame supervision per video
during training. Therefore, the heavy job of manual
labeling is much alleviated.

The FACTS is difficult in two aspects. Firstly, human
parts are very small in the video frame. For example,
in the Indoor dataset, the average width and height
of the face are only 13 and 16 in the 241 � 121
frame. The human parts are often occluded, deformed
and easily affected by illumination, which makes the
FACTS even more difficult. Secondly, the labeling is
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(i) Pixel-level Context

(ii)Frame-level Context

Final Result

Fig. 2. During testing, a segmentation window is slided along the video. The parsing result of frame It is
determined by current frame It and two historical frames It�l and It�s.

insufficient. For example, Indoor dataset contains 400
training tracklets. In each tracklet, only 1 frame is
labeled. Therefore, we have only 400 labeled frames
to learn the segmentation model for 13 fine-grained
categories (12 human parts and “background”). How
to effectively leverage the large amount of unlabeled
video frames is the key.

To tackle these difficulties, we propose a Temporal
Context segmentation Network (TCNet), shown in
Figure 2. For each tracklet, the human-centric tracklet
is produced by applying Faster R-CNN [36] based hu-
man detection to the first frame, and Kernelized Cor-
relation Filters [11] based human tracking to the rest
frames. The detected/tracked human-centric bound-
ing boxes are then enlarged to 241� 121 to feed into
the network. The preprocessing partially addresses
the challenge of parts being small. To further solve
the two challenges, TCNet fully explores the rich tem-
poral context among the video. To segment the frame
It, both It and two historical frames It�l and It�s

are considered, where l > s. The triplet fIt; It�l; It�sg
is fed into the network to collaboratively produce
the segmentation result. More specifically, two kinds
of context are explicitly considered. 1) Pixel-level
context: adjacent frames are similar, therefore the
neighboring frames can help segment one particular
frame. Here fP bag

t�l ; P
bag
t�s ; P

bag
t g are the segmentation

confidence of “bag”. The bag is not obvious in P bag
t

due to the dark lighting. However, both P bag
t�l and

P bag
t�s have strong responses for “bag”, which serves as

the pixel-wise context. Therefore, “bag” can be easily
identified in the refined segmentation result P̂ bag

t

thus the missed detection is reduced. 2) Frame-level

context: one won’t change the clothes and accessories
in a short time. Therefore, we regularize the categories
to be basically unchanged for all frames of the tracklet.
Technically, for each frame, we estimate the likelihood
vector whose dimension is the number of categories.
The vectors fFt�l; Ft�s; Ftg together vote for the final
confidence vector F̂t. Because of the interference of the
dark lighting and particular human pose, the “pants”
is misclassified as “dress” in Ft. The likelihood of
“dress” is denoted by the green solid bin. By con-
sidering the frame-level context, the corresponding
likelihood is suppressed thus false alarm is reduced.
Extensive experiments on four datasets show that,
although the human part is small and labeling is
scare, TCNet achieves state-of-the-art performance by
making full use of both pixel-level and frame-level
context.

The contributions of our work are listed as follows:

1) To the best of our knowledge, it is the first
attempt to explore FACTS task by labeling one
single frame per video. It has extensive applica-
tion prospects.

2) The proposed TCNet fully explores the pixel-
level and frame-level context in the video to use
both the unlabeled and labeled frames. The pro-
posed framework is end-to-end and thus very
applicable for practical usage.

3) We have released the 4 newly collected datasets,
including Indoor, Outdoor, iLIDS-Parsing and
Daily to the public via http://liusi-group.com/
projects/FACTS.

An earlier version of this manuscript appeared in
CVPR 2017 [24]. In this version we have refined the
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pixel-level context by the unsupervised optical flow
refinement, added the frame-level context propaga-
tion module, conducted extensive experiments on two
more datasets and presented more in-depth discus-
sion about the experimental results.

2 RELATED WORK

FACTS is relevant with several tasks, including video
object segmentation, video semantic segmentation,
fine-grained segmentation as well as video analysis
with sparse annotations.

Video Object Segmentation: DAVIS 2016 [32] is a
single object segmentation challenge. Khoreva et al.
[33] propose the MaskTrack which combines an offline
mask refinement model and an online model. Caelles
et al. [2] propose OSVOS to use the generic semantic
information learned on ImageNet. MaskTrack and OS-
VOS are the top-performing algorithms in the DAVIS
2016 challenge. Both DAVIS 2017 [35] and 2018 [3] are
multiple objects segmentation challenges. Khoreva et
al. [15] proposes Lucid Tracker which generates in-
domain training data using lucid dream. It reaches
competitive results without pre-training. Luiten et al.
[26] present the PReMVOS which first generates some
mask proposals for each video frame and then selects
and merges these proposals into accurate and tempo-
rally consistent object tracks. Li et al. propose VSReID
[18] and DyeNet [17] which combines both temporal
propagation and re-identification functionalities into a
single framework. Lucid Tracker, VSReID, PReMVOS
and DyeNet are among the best performing algo-
rithms in the DAVIS 2017/2018 challenges.

Although great breakthroughs have been made in
the video object segmentation field, their results are
too coarse in some real applications. Moreover, they
require dense pixel-wise annotation. On the contrary,
the results of FACTS are more detailed and fine-
grained. In addition, much manual labeling efforts are
saved.

Video Semantic Segmentation: Existing video seg-
mentation methods can be mainly classified into two
kinds. The first kind of methods target at high seg-
mentation accuracies. Representative methods include
spatio-temporal FCN (STFCN) [7], Spatio-Temporal
Transformer Gated Recurrent Unit (STGRU) [30],
Parsing with prEdictive feAtuRe Learning (PEARL)
[14], NetWarp [9] and Adaptive Temporal Encoding
Network (ATEN) [48]. The second kind of methods
focus on speed acceleration, including clockwork FCN
[37], Deep Feature Flow [52], budget-aware deep
semantic video segmentation [29] and Low-Latency
Video Semantic Segmentation [19].

These video semantic segmentation methods do not
track objects across the video while FACTS focuses on
segmenting the region inside the tracklet and set the
pixels outside the tracking box as background.

Fine-grained Segmentation: Compared with the
coarse object/instance segmentation, object part seg-
mentation is much more fine-grained. Representa-
tive works are conducted on the Horse-Cow parsing
dataset [39] and the PASCAL Quadrupeds dataset [5].
Wang et al. explore how to jointly achieve object and
part segmentation using deep learned potentials [40].
In recent years, human part segmentation [44], [27]
has received increasing attention. Most human pars-
ing methods target at parsing human-centric images,
such as the fashion photos [20] or the daily photos
[21], [42], [13].

These part segmentation works are not specially
designed for the FACTS task, and cannot address the
challenge of training data insufficiency.

Video Analysis With Sparse Annotations: Some
other video analysis tasks, such as video pose esti-
mation and video semantic segmentation also suffer
from labeling difficulty. Pfister et al. [34] investigate
a video pose estimation architecture that is able to
benefit from temporal context by combining informa-
tion across the multiple frames using optical flow. Zhu
et al. [51] propose flow-guided feature aggregation
(FGFA) to leverage temporal coherence on feature
level to improve the video object detection accuracy.

Although these methods utilize optical flow to re-
fine the results, they do not mine the frame-level
context, which is proven to greatly increase the seg-
mentation accuracy. In addition, these methods ad-
dress the video pose estimation or video segmentation
problems, instead of the FACTS problem.

3 APPROACH

3.1 Framework
As mentioned, one of the main challenges of the
FACTS task lies in the insufficient training data. Con-
sidering the video frames are continuous and redun-
dant, we resort to the temporal context to take advan-
tages of the large amount of unlabeled video frames.
Therefore, FACTS is tackled in a semi-supervised
learning manner. The key is how to build the inter-
frame correlations (context) between labeled and unla-
beled frames. Basically, we mainly exploit two kinds
of context. On the one hand, the pixel-level context
(Section 3.2) builds the pixel-wise correspondences
between labeled and unlabeled frames. On the other
hand, the frame-level context (Section 3.3) guarantees
the smoothness of the classification results of adjacent
frames. The two kinds of context are complementary
with each other. The pixel-wise context is local while
the frame-level context is global.

The framework of TCNet is shown in Figure 3 ,
which consists of pixel-level context and frame-level
context. The input is the triplet fIt�l; It�s; Itg, among
which only It is labeled during training. The long-
range contextual frame It�l and short-range contex-
tual frame It�s are l and s frames temporally ahead
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Optical Flow
Estimation

Fig. 3. The architecture of the proposed Temporal Context segmentation Network.

of It. The values of l and s are set empirically. During
testing phase, no manual annotation is needed. The
output of TCNet is the parsing result of It. First,
the triplet images fIt�l; It�s; Itg are fed into feature
extraction module. Then three feature maps are fed
into several parallel modules. (i) The frame parsing
module estimates three rough labelmaps for the triplet,
namely fPt�l;Pt�s;Ptg. (ii) The frame classification
module produces the frame-level likelihood vectors
fft�l; ft�s; ftg. (iii) The optical flow estimation module
estimates the optical flow Ot;t�l and Ot;t�s. More-
over, the confidence of optical flow Ct;t�l and Ct;t�s

are simultaneously estimated. Afterwards, the frame
parsing results, the estimated optical flows as well
as the confidences are fed into the pixel-level fusion
module to produce a better segmentation result P̂t.
In addition, the estimated frame classification results
vote for a refined F̂t via the frame-level fusion module.
Finally, P̂t and F̂t are pixel-wisely added to produce
the final parsing result ~Pt.

The optical flow estimation and frame parsing
modules are able to share the feature maps for the
following reasons. Firstly, the two modules are se-
mantically relevant. Only pixels of the same labels can
be matched by optical flow. Secondly, both networks
make pixelwise predictions. Frame parsing estimates
pixelwise category while optical flow is the pixelwise
offset/shift. It provides a prerequisite for feature shar-
ing. Another advantage of sharing is much compu-
tation can be saved. Any architecture for semantic
segmentation, e.g, [46], [4] can be used for frame
parsing module. In our experiments, DeepLab v2 [4]
based on the VGG [38] architecture is selected.

3.2 Pixel-level Context Propagation
Segmenting human parts frame by frame is difficult
due to small size, the illumination, human pose or
camera viewpoint issues. Because videos are continu-
ous, the segmentation result of one frame is expected
to be refined by its nearby frames. In order to build the
pixel-wise correspondences between frames, optical
flow Oa;b : R2 ! R2 where R is the rational field
is calculated. The flow field Op

a;b = (qx � px; qy � py)
computes the relative offsets from each point p in
image Ia to a corresponding point q in image Ib. The
Ot;t�l is the optical flow between It, and It�l. Ot;t�s

is estimated similarly.
One feasible approach is to off-line calculate the

optical flow via any off-the-shelf method [1] and load
them into the network during optimization. It makes
training and testing be a multi-stage pipeline, and
thus very expensive in space and time. To this end, we
compute the optical flow in an on-line manner. After
the shared feature extraction module, a “correlation
layer” which is used in the Flownet and its successors
[8], [28], performs multiplicative patch comparisons
between two feature maps. After that, several “upcon-
volutional” layers are used to obtain the optical flow
with the same resolution as the input image pairs.
Since our videos have no groundtruth optical flow,
we use the Flying Chairs dataset [8] for training.

Unsupervised Optical Flow Refinement: Because
the Flying Chairs dataset is synthetic and quite dif-
ferent from the real-world videos, we propose to
refine the optical flow obtained using Flying Chairs
by minimizing an appearance reconstruction loss [49].

Given the image pair fIt�l; Itg, the ideal optical



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2019.2911936, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, X 20XX 5

Fig. 4. Details of pixel-level fusion and frame-level fusion. �;+ respectively denote element-wise product and
element-wise add.

flow Ot;t�l should perfectly match one image to the
other. Mathematically, the appearance reconstruction
loss L(It�l; It; Ot;t�l) should be minimized:

L(It�l; It; Ot;t�l) =



Ii

t � ~Ii
t





1

=


Ii

t � wi (It�l; Ot;t�l)




1
;

(1)
where k�k1 denotes the L1 norm. ~Ii

t is the wrapped
counterpart of Ii

t , and w (a; b) is the operation of
applying the estimated optical flow b to warp im-
age a. The coordinate of pixel i in It is

�
xi; yi

�
,

while the mapped coordinate in It�l is
�
xi0
; yi0
�

=�
xi; yi

�
+ Oi

t;t�l. When
�
xi0
; yi0
�

falls into sub-pixel

coordinate, we rewrite the ~Ii
t of Equation 1 via bilinear

interpolation:

~Ii
t = wi (It�l; Ot;t�l)

=
P

q2fneighbors of (xi0
;yi0

)g
Iq

t�l(1 �
���xi0

� xq
���)(1 �

���yi0
� yq

���);
(2)

where q denotes the 4-pixel neighbors (top-left, top-
right, bottom-left, bottom-right) of

�
xi0
; yi0
�

.
Note that optimizing Equation 1 does not require

labeling pixel-wise correspondence which is indis-
pensable in traditional optical flow estimation models
[1]. Therefore, it is very applicable in real applications.

Optical Flow Confidence Estimation: The optical
flow estimated after the unsupervised refinement is
still not perfect. Therefore, we estimate the confidence
of the estimated optical flow Ot;t�l. The distance of
warping Di

t;t�l is defined as:

Di
t;t�l =



Ii
t � wi (It�l; Ot;t�l)




1
; (3)

the flow Ot;t�s can be handled in similar manners.
The confidence defined in Equation 3 is the distance

between the original image and its warped counter-

part. The normalized confidence is calculated via:

Ci
t;t�l = exp(�Di

t;t�l=(2�
2
)); (4)

where � is the standard deviation of Dt�l;t. Higher
value indicates more confident optical flow estima-
tion. As shown in Figure 3, the estimated parsing
results P(t�l)!t and P(t�s)!t are obtained by warping
Pt�l and Pt�s according to the optical flow Ot;t�l and
Ot;t�s via:

P(t�l)!t = w(Pt�l; Ot;t�l);
P(t�s)!t = w(Pt�s; Ot;t�s):

(5)

Pixel-level Fusion: As shown in the upper panel of
Figure 4, P(t�l)!t and P(t�s)!t are further weighted
by the confidence map of Equation 4 to reduce the in-
fluence of inaccurate optical flow by: P(t�l)!t�Ct;t�l

and P(t�s)!t � Ct;t�s, where ‘�’ denotes element-
wise product. They are concatenated with Pt and
then fused with several 1 � 1 convolutional layers
to produce P̂t, which is the final result of pixel-level
context propagation.

3.3 Frame-level Context Propagation
Human may not change clothes and accessories in
a very short time, therefore, we use the historical
frame-level classification likelihood vectors to refine
the categories in one particular frame. For example, if
the human is predicted as wearing “pant” in the past
several frames but predicted as wearing “dress” in a
new frame, the “dress” is very likely to be wrong.

As shown in Figure 3, the frame classification mod-
ule builds upon the feature extraction modules. It
generates the likelihood vectors f , whose element in-
dicates the existence of one particular label, e.g., bag.
The likelihood vectors fft�l; ft�s; ftg are weighted
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by [wt�l; wt�s; wt] to produce the smoother f̂t. f̂t is
reshaped, duplicated to produce a M �N �K tensor
F̂t whose values in each channel are identical. Then,
F̂t is added pixel-wisely with P̂t to produce the final
segmentation results ~Pt. More details about the frame-
level context propagation is illustrated in the lower
panel of Figure 4.

3.4 Loss Functions & Optimization
In this section, we will first introduce our overall
loss functions and then elaborate the training and
inference strategies.

Two kinds of losses, i.e., segmentation and clas-
sification losses, are applied on the labeled frame
It. The unlabeled frames are not supervised. The
segmentation loss Lseg is the sum of cross-entropy
terms for each spatial position in ~Pt. All positions and
labels are equally weighted in the segmentation loss
term. Mathematically, it is defined as:

Lseg( ~Pt; Gt) =
X
i2It

cross entropy( ~P i
t ; G

i
t) (6)

where Gt is the groundtruth labelmap of the frame
It, i is the coordinate index of the image It. Moreover,
we add a classification loss Lcls of frame classification
that is binary cross-entropy loss for each category.
Mathematically, it is defined as:

Lcls =
X
c2C

cross entropy
�
f̂ c

t ; g
c
t

�
(7)

where f̂t and gc
t are the estimated and groundtruth

vector of category c for the frame It. gc
t is obtained

by summarizing Gt. When any pixel of It is labeled
as class c, gc

t is set as 1. Otherwise, gc
t is 0. C is the

category set. Thus, the overall loss function is:

L = Lseg + Lcls (8)

TCNet is optimized by 2-step alternating training
strategy. (i) We train both the feature extraction and
optical flow estimation modules via the strategies
in Section 3.2. The optical flow estimation module
is initialized via Gaussian distribution, and trained
firstly by Flying chairs dataset [8], and then fine-tuned
by the proposed unsupervised optical flow refinement
method. The feature extraction module is initialized
with VGG model [38] trained on Pascal VOC dataset.
(ii) We train all components together in an end-to-
end manner. Both pixel-level and frame-level fusion
component are initialized via standard Gaussian dis-
tribution (with zero mean and unit variance).

During inference, we slide a segmentation window
along the video to specifically consider the temporal
context. The parsing result of It is jointly determined
by fIt�l; It�s; Itg. Note that It�l and It�s are earlier
frames whose feature maps and parsing results are
stored in the memory buffer. Therefore, the extra

computational cost brought by considering the seg-
mentation window is negligible. Note that because
the first l frames of a video do not have enough
preceding frames to form a sliding parsing window,
only the frame parsing module is applied to produce
their segmentation results.

Datasets Training Validation Testing
Indoor [24] 400 500 1000

Outdoor [24] 421 582 1000
iLIDS-Parsing [41] 100 285 500

Daily 244 120 670

TABLE 1
The number of labeled images of the four datasets.

4 EXPERIMENTS

4.1 Experimental setting
Dataset Collection & Labeling: Experiments are con-
ducted on four datasets. To produce human-centric
tracklet, persons are first detected via Faster R-CNN
[36] fine-tuned on VOC dataset [6] and then tracked
by KCF[11]. The statistical data of these four dataset
are summarized in Table 1. Representative video
frames are shown in Figure 5.

1) The Indoor dataset contains 700 videos, among
which 400 videos, 100 videos and 200 videos
are used as training set, validation set and test-
ing set, respectively. This dataset contains 13
categories (12 human parts and “background”),
namely face, hair, upper-clothes, left-arm, right-
arm, pants, left-leg, right-leg, left-shoe, right-
shoe, bag, dress, and background. We randomly
select and pixel-wisely label 1 frame from each
training video. For each validation and testing
video, we randomly label 5 frames.

2) The Outdoor dataset contains 421 training
videos, 120 validation videos and 200 testing
videos. The categories and configurations are the
same as the Indoor dataset.

3) We also labeled several frames from iLIDS Video
re-IDentification (iLIDS-VID) dataset 1 [41]. The
new labeled set is called iLIDS-Parsing dataset.
Some categories, e.g. left-leg, right-leg and dress,
seldom appear in the dataset since this dataset
is taken in winter and people all wear pants.

4) The Daily dataset is a newly collected dataset
from several video sharing website, such as
youku.com. A variety of scenes such as shop,
road, are included. The categories and configu-
rations are same as the Indoor dataset.

Evaluation Metrics We use the same metrics as
PaperDoll [44] to evaluate the performance. Among
all evaluation metrics, the average F-1 is the most
important. We train TCNet via Caffe [12] using Nvidia

1. We have obtained the approval of the database publisher.
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Indoor dataset Outdoor dataset

iLIDS-Parsing dataset Daily dataset

Fig. 5. Images in the four datasets.

GeForce GTX 1080 Ti. The initial learning rates for
frame parsing and optical flow estimation modules
are 1e-8 and 1e-5 respectively. The long range l and
short range s are empirically set as 3 and 1 in the
indoor dataset. Because the outdoor dataset has a
lower frame rate and contains more quick dynamics, l
and s are set to 2 and 1. The settings in iLIDS-Parsing
and Daily dataset are the same as the Indoor dataset.

4.2 Comparison with state-of-the-art
We compare our results with seven state-of-the-art
methods. The 1st is PaperDoll [44]. It is a tradi-
tional human parsing method. The 2nd is ATR [20]
which formulates the human parsing task as an active
template regression problem. The 3rd baseline is M-
CNN [22], which is a quasi-parametric human parsing
method. The 4th is Co-CNN [21] which uses a Con-
textualized Convolutional Neural Network to tackle
the problem. The 5th is FCN-8s [25] which achieves
competitive results in several semantic segmentation
benchmark datasets. The 6th baseline is DeepLab V2
[4]. The above mentioned six methods are supervised
algorithms. Therefore, only the labeled frames are
used for training. The 7th baseline is EM-Adapt 2 [31]
which treats image-level annotation as weak super-
vision. For each tracklet, its label can be obtained by
summarizing the pixel-level annotations of the labeled
frame into a label vector. Thus all unlabeled frames
of the tracklet share the same image-level annotation.
The 8th baseline is NetWarp [9] which uses optical
flow of adjacent frames for warping internal network
representations across time. To be fair, the backbone of
NetWarp is kept the same as ours (DeepLab v2 based
on the VGG architecture). We add the NetWarp mod-
ule to Conv5 3. Moreover, two versions of NetWarp
are implemented by utilizing two kinds of optical flow
methods. One is NetWarp-DIS which uses the DIS
flow in their original paper [9], the other is NetWarp-
Flownet which adopts Flownet [8]. Note that our TC-
Net is different from NetWarp in that our optical flow

2. http://liangchiehchen.com/projects/DeepLab-LargeFOV-
Semi-EM-Fixed.html.

is online calculated, while NetWarp uses the offline
optical flow. We also consider different variants of
TCNet. “l” or “s” means using long or short range
nearby frames for pixel-level context propagation,
while “c” means the confidence is used in the fusion of
warped optical flows. The techniques corresponding
to “l”, “s”, and “c” have been discussed in [24]. “f”
refers the method of using frame-level context, and
“uf” means using the unsupervised fine-tuned optical
flow.

Methods Acc. Fg.acc. Avg.pre. Avg.rec. Avg.F-1
PaperDoll [44] 46.71 78.69 33.55 45.68 36.41
ATR [20] 85.69 71.24 47.39 53.21 49.14
M-CNN [22] 85.19 71.31 42.9 50.11 45.68
Co-CNN [21] 87.58 72.58 53.54 51.87 51.38
FCN-8s [25] 88.33 71.56 55.05 52.15 53.12
DeepLab [4] 86.88 77.45 49.88 64.3 54.89
EM-Adapt [31] 86.63 80.88 53.01 63.64 56.40
NetWarp-DIS [9] 88.52 75.21 55.05 60.18 57.02
NetWarp-Flownet [9] 88.66 75.68 55.35 60.82 57.59
TCNet l 88.81 74.42 56.28 59.81 57.74
TCNet l+s 88.91 77.12 55.9 61.21 58.04
TCNet l+c 88.75 77.28 56.07 61.94 58.43
TCNet s+c 89.07 77.06 56.86 61.98 58.73
TCNet l+s 88.85 78.68 56.77 62.73 59.21
TCNet l+s+c 89.88 76.48 61.52 59.38 60.20
TCNet l+s+c+f 90.11 79.92 60.84 64.63 62.25
TCNet l+s+c+uf 89.99 79.81 59.64 68.14 62.71

TABLE 2
Comparison with state-of-the-arts and several variants

of TCNet in Indoor dataset. (%).

Indoor dataset: Table 2 shows the comparisons be-
tween TCNet and 7 state-of-the-art methods in the
Indoor dataset. Different variants of TCNet are gener-
ated by gradually adding more components, which
will be discussed in the next subsection. It can be
seen that “TCNet l+s+c+uf” reaches the average F-1
score of 62:71%, which is superior than all baselines,
even better than the score 60:20% in [24]. The 1st to
the 6th baselines all use labeled images. Therefore,
the improvements show the advantage of utilizing
the unlabeled dataset. EM-Adapt, NetWarp-DIS and
NetWarp-Flownet also use unlabeled images, and
thus reach a higher F1-score comparing with other
baselines. Especially, NetWarp-Flownet reaches a F1-
score of 57:59%, which is better than other baselines.
However, NetWarp-Flownet is still worse than all
the variants of TCNet. It shows that pixel-level con-
text is helpful in the FACTS task. The frame-level
context and refined optical flow estimation also im-
prove the performance. The F1-scores of each category
are shown in Table 3. We can observe that “TCNet
l+s+c+uf” beats all baselines in 11 categories, which
again shows the big improvements brought by the
proposed TCNet.
Outdoor dataset: Among all the baselines, EM-Adapt,
NetWarp-DIS and NetWarp-Flownet show superior
performances. Therefore, we only compare with the
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shoe bag

PaperDoll [44] 92.62 57.16 58.22 62.52 19.96 14.99 52.47 25.43 20.7 9.92 20.66 24.41 14.32
ATR [20] 93.62 59.08 60.79 81.36 32.54 28.65 75.40 29.19 29.60 70.22 11.68 17.75 48.97
M-CNN [22] 93.40 53.94 59.12 75.53 24.46 20.51 78.46 36.15 21.92 43.61 14.53 18.79 53.43
Co-CNN [21] 94.06 64.64 73.53 81.54 26.82 31.66 77.13 25.47 34.11 76.08 15.42 20.57 46.91
FCN-8s [25] 94.80 71.35 74.90 79.53 33.55 32.29 81.89 36.57 33.98 43.53 33.03 31.50 43.66
DeepLab [4] 93.64 63.01 69.61 81.54 40.97 40.31 81.12 34.25 33.24 64.60 28.39 26.40 56.50
EM-Adapt [31] 93.46 66.54 70.54 77.72 42.95 42.20 82.19 39.42 37.19 63.22 33.18 31.68 53.00
NetWarp-DIS [9] 94.64 66.09 71.59 81.80 44.18 43.45 82.91 37.13 39.10 61.93 32.01 30.03 56.33
NetWarp-Flownet [9] 94.70 66.46 71.77 81.94 44.84 44.14 83.16 37.58 39.76 63.24 33.29 31.27 56.53
TCNet l 94.68 67.28 72.74 82.12 42.96 43.35 81.91 39.26 38.31 67.17 31.47 30.38 58.99
TCNet s 94.65 66.27 73.48 83.12 45.17 44.89 82.72 38.62 38.43 66.04 30.93 31.46 58.81
TCNet l+c 94.44 67.29 73.76 83.06 43.56 43.56 82.33 41.36 39.46 68.36 31.75 31.73 59.04
TCNet s+c 94.64 67.62 74.13 83.48 45.13 45.08 83.21 39.89 40.11 68.17 31.15 32.27 58.75
TCNet l+s 94.50 67.08 73.52 83.10 45.51 44.26 82.59 41.82 42.31 69.43 33.71 33.36 58.58
TCNet l+s+c 94.89 70.28 76.75 84.18 44.79 43.29 83.59 42.69 40.30 70.76 34.77 35.81 60.43
TCNet l+s+c+f 95.22 68.30 77.04 84.44 50.82 50.20 84.29 45.92 45.86 71.33 36.70 38.13 61.06
TCNet l+s+c+uf 95.23 67.09 77.64 84.78 51.16 50.85 84.60 46.53 46.98 67.96 39.30 40.55 62.62

TABLE 3
Per-Class Comparison of F-1 scores with state-of-the-arts and several architectural variants of TCNet in Indoor

dataset. (%).

Methods Acc. Fg.acc. Avg.pre. Avg.rec. Avg.F-1
EM-Adapt [31] 84.37 66.77 48.95 50.29 48.93
NetWarp-DIS [9] 84.91 65.26 50.21 49.54 49.10
NetWarp-Flownet [9] 84.84 65.67 49.64 50.69 49.49
TCNet l+s+c 85.73 67.19 52.64 50.93 50.70
TCNet l+s+c+f 85.06 70.01 52.06 52.64 51.43
TCNet l+s+c+uf 85.76 68.95 51.94 54.81 52.94

TABLE 4
Comparison with state-of-the-arts and several variants

of TCNet in Outdoor dataset. (%).

EM-Adapt, NetWarp-DIS and NetWarp-Flownet in
the Outdoor dataset. Table 4 shows the results. It
can be seen that our method reaches the average F-1
score of 52:94% while NetWarp-Flownet only reaches
49:49%. We find that the performances of Table 4 are
generally lower than that of Table 2. The reason is
that the outdoor dataset set has a relative lower frame
rate, so the changes in nearby frames are bigger than
those in Indoor dataset, which makes the optical flow
estimation difficult. The F1-scores of each category are
shown in Table 5. Again, “TCNet l+s+c+uf” performs
the best in most cases.
iLIDS-Parsing dataset: Similarly, we only compare
the EM-Adapt, NetWarp-DIS and NetWarp-Flownet
method with the variants of TCNet. Table 6 shows
the results. The overall performance in iLIDS-Parsing
dataset are poor, because there are only 100 images
for training, which is much less than the images used
for training in Indoor and Outdoor datasets. Even so,
the method “TCNet l+s+c+uf” beats the NetWarp-
Flownet in the average F-1 score by 1:85%. Table
4.2 shows the detailed F1-scores for each category.
Note that the scores for “L/R-arm”, “L/R-leg”, and
“Dress” are very low. That’s because the images in

iLIDS-Parsing dataset are taken in winter, the training
samples are extremely insufficient. Still, the method
“TCNet l+s+c+f” and “TCNet l+s+c+uf” win in most
categories.
Daily dataset: The overall comparison is shown in
Table 8 and the detailed F1 scores are illustrated in
Table 9. The method “TCNet l+s+c+uf” performs best
in 11 categories. Although the number of labeled
images for training is only one half of those in Indoor
dataset, the average F-1 score is high. We believe this
is because the images in the Daily dataset are much
clearer than those in the previous datasets. This is
better illustrated in Figure 5.

4.3 Component Analysis

Fig. 6. Comparisons of optical flow with and without
refinement. The optical flow warps Image B to Image
A. The warped image using the refined optical flow are
more similar with Image A.
Unsupervised optical flow refinement: The optical
flow estimation is improved by using the unsuper-
vised optical flow refinement technique introduced
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EM-Adapt [31] 93.71 65.05 63.56 77.80 38.16 37.24 75.99 36.95 35.48 18.59 33.72 31.10 28.81
NetWarp-DIS [9] 94.22 64.94 64.72 76.45 38.56 39.05 76.64 38.54 37.80 18.32 35.43 25.98 27.66
NetWarp-Flownet [9] 94.20 65.50 64.24 76.93 37.44 39.93 76.43 38.65 38.41 17.78 35.22 24.73 33.94
TCNet l+s+c 94.24 67.80 66.89 79.50 41.74 43.00 78.03 40.00 36.85 23.24 32.87 25.85 29.07
TCNet l+s+c+f 93.78 67.98 68.22 78.78 44.44 44.83 77.27 39.63 39.54 21.75 33.03 29.59 29.82
TCNet l+s+c+uf 94.44 68.40 68.85 79.62 43.52 43.64 78.83 41.82 38.74 25.67 35.54 32.41 36.79

TABLE 5
Per-Class Comparison of F-1 scores with state-of-the-arts and several architectural variants of TCNet in

Outdoor dataset. (%).

Methods Acc. Fg.acc. Avg.pre. Avg.rec. Avg.F-1
EM-Adapt [31] 85.26 68.59 44.11 35.40 36.04
NetWarp-DIS [9] 84.97 70.66 44.22 36.67 36.15
NetWarp-Flownet [9] 85.29 71.09 44.85 37.01 36.83
TCNet l+s+c 84.97 77.53 47.87 38.39 36.66
TCNet l+s+c+f 84.48 75.33 45.81 38.87 37.82
TCNet l+s+c+uf 85.91 76.91 47.95 39.55 38.68

TABLE 6
Comparison with state-of-the-arts and several variants

of TCNet in iLIDS-Parsing dataset. (%).

in Section 3.2. As shown in Figure 6, the last two
columns are the wrapped images using optical flow
[24] and refined optical flow. In the first row, the
refined optical flow puts the left and right legs closer
in the warped image, which is more similar with
Image A. In the second row, the warped result using
refined optical flow can change the human pose to be
more similar with Image A, e.g., the man’s right leg
is bending and his right heel is lifting.

Quantitative results in the Indoor, Outdoor, iLIDS-
Parsing and Daily dataset are shown in Table 2, Table
4, Table 8 and Table 6 respectively. It can be concluded
that “TCNet l+s+c+uf” consistently outperforms “TC-
Net l+s+c+f”, which verifies the effectiveness of un-
supervised optical flow refinement.
Pixel-level fusion weights: As shown in Figure 3,
the pixel-level fusion module summarizes the seg-
mentation results of It�l, It�s and It. In the Indoor
dataset, l and s are set to 3 and 1. We visualize the
learned weights of “Face” and “L-arm” in the Indoor
dataset in Figure 7. The horizontal axis has 3 � K
ticks, corresponding to the K fine-grained categories
for It�3, It�1 and It sequentially. K is 13 in the
Indoor dataset. The vertical axis illustrates the fusion
weights. The black dot denotes the maximum weight
of each frame. By observing the sub-figure of “Face”,
we have the following conclusions. First, the weights
of It�3, It�1 and It share similar distributions. Second,
all maximum values for the It�3, It�1 and It, i.e.,
the three black dots, are positive. It demonstrates
that they all contribute to the final result. Third, the
maximum values correspond to “Face”, which is the
category under consideration. Fourth, the maximum
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Fig. 7. The fusion weights for “Face” and “L-arm” in the
Indoor dataset. The 13-dim weights for It�l, It�s and
It are shown sequentially, separated by vertical dotted
lines. For each frame, the category with the maximum
fusion weight is denoted by the black dot.

value of It is greater than that of It�1, which is
greater than that of It�3. It is because temporally
closer frame contributes more to the frame of interest.
Similar phenomenon can be found in the ‘L-arm” case.
Long/Short range context: We test the effectiveness
of long and short range context. “TCNet l” means
TCNet with long-range context only. To implement
this TCNet variant, th image pair fIt; It�lg are fed
into TCNet during both training and testing phases.
Similarly, “TCNet s” is TCNet inputed with fIt; It�sg.
“TCNet l+s” means both long-range and short-range
frames are considered. Table 2 shows the results in
indoor dataset. The Ave.F-1 of “TCNet l” and “TCNet
s” reach 57:74% and 58:04% respectively, which are
lower than “TCNet l+s” 58:43%. It proves the long and
short range context are complementary. The per-class
F1 score of “TCNet l”, “TCNet s” and “TCNet l+s”
in the Indoor datasets can be found in Table 3. They
again show that both long and short range context are
necessary.
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EM-Adapt [31] 92.86 51.92 59.72 81.40 9.14 8.90 76.54 0.00 0.00 0.00 28.92 27.76 31.31
NetWarp-DIS [9] 92.85 52.81 62.39 80.35 6.03 6.76 76.68 0.00 0.00 0.00 32.93 27.68 31.48
NetWarp-Flownet [9] 93.06 54.07 63.27 80.54 8.59 7.02 77.20 0.00 0.00 0.00 33.46 29.59 31.95
TCNet l+s+c 92.39 53.83 66.64 82.87 0.19 3.11 76.63 0.00 0.00 0.00 28.45 29.48 42.99
TCNet l+s+c+f 91.91 59.06 67.97 83.41 10.75 7.40 73.53 0.00 0.00 1.45 27.51 26.36 42.26
TCNet l+s+c+uf 93.01 62.01 68.36 83.45 5.55 10.34 77.70 0.00 0.00 2.90 32.64 24.68 42.17

TABLE 7
Per-Class Comparison of F-1 scores with state-of-the-arts and several variants of TCNet in iLIDS-Parsing

dataset. (%).

Methods Acc. Fg.acc. Avg.pre. Avg.rec. Avg.F-1
EM-Adapt [31] 85.78 63.45 57.57 60.75 58.92
NetWarp-DIS [9] 86.46 63.61 57.91 59.48 59.00
NetWarp-Flownet [9] 86.64 64.06 58.51 59.57 59.42
TCNet l+s+c 86.27 67.45 58.98 63.62 60.48
TCNet l+s+c+f 86.29 67.49 58.09 65.26 60.76
TCNet l+s+c+uf 87.11 67.33 61.41 62.63 61.72

TABLE 8
Comparison with state-of-the-arts and several variants

of TCNet in Daily dataset. (%).

Frame-level Context: By observing Table 2, Table
4, Table 8 and Table 6, we conclude that The “TCNet
l+s+c+f” consistently outperforms “TCNet l+s+c” in
terms of Avg. F-1. It proves that the FACTS task
benefits from adding the frame-level context.

4.4 Qualitative Results

Figure 8 shows the stepwise results of the pixel-level
context fusion process in the Indoor dataset. The 1�4
columns, 5�8 columns and 9�12 columns correspond
to It�l, It�s and It respectively. In the first row, the
left shoe of the man is missing in Pt indicated by the
black ellipse. Thanks to the warped label P(t�s)!t, the
left shoe is retrieved back in the refined prediction P̂t.
In the second row, the belt in the left shoulder of Pt

is removed by fusing the warped result P(t�l)!t and
P(t�s)!t. For the women in the third row, the wrongly
predicted “pants” disappear by pixel-level fusion. In
the fourth row, the left arm of the person are warped
incorrectly in both P(t�l)!t and P(t�s)!t. Thanks to
the confidences Ct;t�l and Ct;t�s, these errors are
not propagated to the P̂t. All the above qualitative
results verify the effectiveness of pixel-level context
propagation.

Figure 9 shows the qualitative comparisons of the
EM-Adapt, NetWarp-DIS, NetWarp-Flownet and sev-
eral variants of the proposed TCNet in four datasets.
The segmentation of the “bag” becomes increasingly
better from the left to the right in the first row of
Figure 9 (a). Similar observations can be found by
comparing the “R-shoe” in the second row of Figure 9
(a). The “face” of the woman in the first row of Figure

9 (b) are gradually refined by adding more modules of
TCNet. All the baselines are not able to well estimate
“R-shoe” in the second row of Figure 9 (b). Besides,
only TCNet can correctly infer the “bag” and “R-shoe”
in the first and second row of Figure 9 (c) respectively.
The segmentation results of all baselines are worse
than TCNet in Figure 9 (d).

4.5 Time Complexity
In the inference stage, TCNet does not bring too much
computation cost than single frame based segmenta-
tion methods, such as Deeplab and EM-Adapt. On
one hand, when parsing frame It, the long-range
frame It�l and short-range frame It�s do not need
to go through the computationally expensive feature
extraction and frame parsing modules because their
rough parsing results Pt�l and Pt�s have already been
calculated. On the other hand, the extra computation
brought by the optical flow estimation is small be-
cause the deep features are shared. It takes about 31ms
to segment one 241x121px frame on a modern GPU
(Nvidia GeForce GTX 1080Ti).

5 CONCLUSION & FUTURE WORKS
In this work, we present the temporal context segmen-
tation network to solve a rarely studied problem, i.e.,
the fine-grained human-centric tracklet segmentation
problem. Since labeling the object parts is tedious,
FACTS only requires one labeled frame per tracklet.
To fully make use of the large amount of unlabeled
frames, TCNet exploits both pixel-level and frame-
level context by estimating optical flow and classifi-
cation likelihood vector online. We demonstrate the
effectiveness of TCNet on four newly collected video
parsing datasets, which have already been released
on our project page. In future, we plan to develop
a real-time FACTS system on mobile phones based
on the model compression and pruning techniques.
Moreover, we plan to apply TCNet to segment other
kinds of object tracklet, such as cars.
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